Artocarpol A, a Novel Constituent with Potent Anti-inflammatory Effect, Isolated from Artocarpus rigida by Mei-Ing Chung, Horng-Huey Ko, Ming-Hong Yen, and Chun-Nan Lin* School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan 807, Republic of China #### and Sheng-Zehn Yang Department of Forest Resource, Management and Technology, National Pintung University of Science and Technology, Ping Tung Hsien, Taiwan 912, Republic of China ### and Lo-Ti Tsao and Jih-Pyang Wang Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan 407, Republic of China A novel phenolic compound, artocarpol A (1), was isolated from the root bark of *Artocarpus rigida* and its structure determined by spectroscopic methods and by comparison with its diacetate derivative. Compound 1 strongly inhibited superoxide formation in phorbol 12-myristate 13-acetate (PMA) stimulated rat neutrophils in a concentration-dependent manner with an IC_{50} value of $13.7 \pm 0.7 \,\mu\text{M}$. Compound 1 also showed a significant inhibitory effect on tumor necrosis factor- α (TNF- α) formation in lipopolysaccharide(LPS)-stimulated RAW 264.7 cells. - **1. Introduction.** Various constituents isolated from the bark of *Artocarpus rigida* (Moraceae) have been reported [1][2]. Within the scope of our search for biologically active compounds from Formosan *Artocarpus* plants, we investigated the constituents of the root bark of *A. rigida*. The root barks of *A. rigida* were collected at Ping-Tung Hsien, Taiwan, R.O.C., during July 1998. The CHCl₃ extract was chromatographed (silica gel) and yielded artocarpol A (1). In the present paper, the structural characterization, configuration, and anti-inflammatory activity of 1 are reported. - **2. Results and Discussion.** Compound **1** was isolated as colorless needles. High-resolution MS revealed a M^+ at m/z 444.2394, which corresponds to the molecular formula $C_{29}H_{32}O_4$. The IR spectrum indicated the presence of OH groups (3399 cm⁻¹) and aromatic-ring moieties (1620 and 1593 cm⁻¹). The ¹H-NMR spectrum of **1** (*Table 1*) showed five aromatic proton signals (δ 6.51, 6.55, 6.80, 6.99, and 7.42 ppm) and proton signals of a γ , γ -dimethylallyl group (δ 1.64, 1.70, 3.18, and 5.20 ppm). Analysis of ¹H, ¹H-COSY, HMQC, and HMBC data (*Fig. 1*) of **1** established the partial structures **a** and **b** (see *Fig. 1*). The ¹H-NMR spectrum of **1** also showed proton signals of a 'cyclol', *i.e.* partial structure **c** in *Fig. 1* (δ 0.60, 0.86, 1.27, 1.57, 1.62, 1.75, 2.02, 2.31, 2.45, and 3.01) [3], whose structure was confirmed by ¹H, ¹H-COSY, HMQC, and HMBC (*Fig. 1*). The connectivities of partial structures **a c** were deduced from HMBC data, the configurations from NOESY data (*Fig. 2*), and the structure of **1** was finally established by further ¹H- and ¹³C-NMR and MS data of **1** and of its diacetate derivative. Consequently, artocarpol A (1) was characterized as rel-(10aR,12a-S,12bR,13aR)-10a,11,12a,12b,13,13a-hexahydro-10a,13,13-trimethyl-2-(3-methylbut-2-enyl)-12H-5,10-dioxacyclobuta[cd]dibenzo[3,4:6,7]cyclohepta[1,2-f]indene-3,7-diol. Fig. 1. Structure of **1** and partial structures **a**-**c** of **1**, with some key HMBC correlations. Bold lines represent 1 H, 1 H and 1 H, 1 C spin systems identified by 1 H, 1 H-COSY, HMQC, and HMBC data. Arbitrary numbering. | Table 1. | ¹ H- and ¹ | C-NMR | Spectra (| (CDC | $l_3) o$ | f 1 a |). Arbitrary | numbering | according | to I | ig. 1 | | |----------|----------------------------------|-------|-----------|------|----------|-------|--------------|-----------|-----------|------|-------|--| |----------|----------------------------------|-------|-----------|------|----------|-------|--------------|-----------|-----------|------|-------|--| | | $\delta(C)$ | $\delta(\mathrm{H})$ | | $\delta(C)$ | $\delta(\mathrm{H})$ | |------------|----------------------|-------------------------|----------------------|-------------|--------------------------| | H-C(1) | 107.7 | 6.55 (s) | H-C(12) | 122.6 | 5.20 (t, J = 6.8) | | C(1a) | 155.4 | | C(13) | 134.1 | | | C(2) | 153.7 | | Me(14) | 17.8 | 1.64(s) | | C(3) | 120.5 | | Me(15) | 25.7 | 1.70(s) | | H-C(4) | 106.5 | 6.51(s) | H-C(16) | 38.3 | 3.01 (d, J = 9.6) | | C(4a) | 130.7 | | H-C(17) | 40.6 | 2.45 (t, J = 9.6) | | H-C(5) | 120.9 | 7.42 (d, J = 8.4) | C(18) | 84.2 | | | C(5a) | 122.3 | | Me(19) | 25.3 | 1.27(s) | | H-C(6) | 111.8 | 6.80 (dd, J = 8.4, 2.4) | $CH_2(20)$ | 25.1 | $1.62 \ (m), 1.75 \ (m)$ | | C(7) | 153.2 ^b) | | CH ₂ (21) | 41.0 | 1.57(m), 2.02(m) | | H-C(8) | 98.3 | 6.99 (d, J = 2.4) | H-C(22) | 46.6 | 2.31 (dt, J = 8.8, 4.4) | | C(8a) | 153.1 ^b) | , | C(23) | 40.1 | , , , | | C(9) | 153.3 ^b) | | Me(24) | 19.0 | 0.60(s) | | C(10) | 119.7 | | Me(25) | 33.3 | 0.86(s) | | $CH_2(11)$ | 27.4 | 3.18 (d, J = 6.8) | . , | | . / | ^a) All assignments were confirmed by HMQC, HMBC, and NOESY data. Chemical shifts δ in ppm and coupling constants J in Hz. ^b) Attributes may be reversed. In structure 1 (Fig. 1), the HMBC of H-C(5) to C(9) confirmed the connectivity of partial structure a to partial structure \mathbf{c} , and the HMBC of H-C(16) to C(4a) confirmed that the partial structure \mathbf{c} was linked to partial structure **b** by C(10) - C(4a). In the NOESY experiment with **1**, the correlations between Me(19)/ $H-C(17)/H_a-C(20)$, $H_a-C(20)/H_a-C(21)/H-C(22)$, $H-C(22)/H-C(16)/H-C(17)/H_a-C(20)$, and $H-C(16)/H-C(17)/H_a-C(20)$ H-C(17) (Fig. 2) suggested the α -configuration for H-C(16), H-C(17), Me(19), and H-C(22). These results and the molecular model of 1 suggested a trans arrangement of Me(19) and the geminal Me groups at C(23), and the latter two (δ 0.60 and 0.86) experienced a positive aryl-shielding contribution [3]. The ¹H-NMR spectrum of the diacetate obtained from 1 showed two acetyl signals at δ 2.56 (s) and 2.34 (s) and five aromaticproton signals at δ 6.61 (s), 6.75 (s), 7.01 (dd, J = 8.4, 2.4 Hz), 7.27 (d, J = 2.4 Hz) and 7.55 (d, J = 8.4 Hz). By comparing the aromatic-proton chemical shifts of 1 (Table 1) and of its diacetate, it was found that the signal at δ 6.55, 6.80, and 6.99 of **1** experienced a significant downfield shift of $\Delta \delta = +0.20$, +0.21, and +0.27 ppm, respectively, upon acetylation, whereas the signal at δ 6.51 and 7.42 of 1 showed only a slight downfield shift of $\Delta \delta = +0.10$ and 0.13 ppm, respectively. In addition to the acetylation-induced shifts [4], 1 showed a negative Gibb's test and significant NOESY interactions between a phenol signal at δ 4.88 (s, 1 H, exchange with D₂O) and H-C(12), Me(14), and Me(15), thus establishing an ether linkage between C(1a) and C(8a) of partial structures a and b, respectively (Fig. 1). The 13 C-NMR spectrum of $\mathbf{1}$ (*Table 1*) supported the structure assignment. The base peak at m/z 361 in the MS of $\mathbf{1}$ was attributed to the fragments $[429-b-H]^+$ ($Fig.\ 2$). This and characteristic peaks at m/z 429 ($[M-a]^+$), 305 ($[429-CO-3H]^+$), 235 ($[305-b-H]^+$), and 223 ($[361-c-H]^+$) ($Fig.\ 2$) also confirmed the structure assignment of $\mathbf{1}$. Fig. 2. Some key NOESY interactions and EI-MS fragmentation patterns of 1 The anti-inflammatory activities of **1** were studied *in vitro* by measuring the inhibitory effects on the chemical mediators released from mast cells, neutrophils, macrophages, and microglial cells. Compound **1** did not cause significant inhibition of mast-cell degranulation stimulated with compound 48/80 and neutrophil degranulation stimulated with formyl-Met-Leu-Phe (fMLP) (1 μ M)/cytochalasin B (CB) (5 μ g/ml) (data not shown) [5–7]. fMLP (0.3 μ M)/CB (5 μ g/ml) or PMA (3 nM) also induced the superoxide-anion formation from rat neutrophils. As shown in *Table 2*, **1** strongly inhibited superoxide anion formation in phorbol 12-myristate 13-acetate (PMA) stimulated rat neutrophils in a concentration-dependent manner with an IC_{50} value of $13.7 \pm 0.7 \mu$ M, while it did not significantly inhibit the superoxide-anion formation from rat neutrophils stimulated with fMLP/CB (data not shown). The data indicate that fMLP/CB and PMA induce the superoxide-anion formation from rat neutrophils, but that they utilize different transduction mechanisms and are regulated differently [8][9]. Table 2. The Inhibitory Effect of 1 on Superoxide-Anion Formation from Rat Neutrophils Stimulated with PMA a) | Compound | Superoxide formation | | | | | |----------------------|-------------------------------|-----------------|--|--|--| | | x mol/106 cells/30 min | % inhibition | | | | | Control | 3.14 ± 0.12 | | | | | | 1 1 μM | 4.38 ± 0.74 | -37.3 ± 3.0 | | | | | 3 μΜ | 3.55 ± 0.68 | -10.6 ± 7.8 | | | | | 10 μм | 0.57 ± 0.03 b) | 80.7 ± 3.9 | | | | | 30 μм | 0.35 ± 0.09 b) | 88.6 ± 3.2 | | | | | Trifluoperazine 1 μM | 2.55 ± 0.23 | 16.6 ± 0.1 | | | | | 3 μΜ | 1.59 ± 0.43 b) | 49.5 ± 7.4 | | | | | 10 μм | $0.39 \pm 0.19^{\mathrm{b}})$ | 87.1 ± 4.9 | | | | ^a) Values are expressed as the means \pm s.e.m. (n=3). ^b) p < 0.01 compared with control. Following the activation of mouse macrophage-like cell line RAW 264.7 and murine microglial cell line N9, NO and TNF- α were generated in response to LPS and LPS/interferon- γ (IFN- γ), respectively [10–12]. Compound 1 did not cause significant inhibitory effects on NO accumulation from RAW 264.7 and N9 cells in response to LPS (1 µg/ml) and LPS (10 ng/ml)/IFN- γ (10 unit/ml) (data not shown), respectively [13]. Compound 1 (3 µm) caused potent inhibitory effects on the product of TNF- α from RAW 264.7 cells induced by LPS (1 µg/ml) with a % inhibition of 40.1 ± 2.0, while it (1 µm) showed a slight inhibitory effect on the production of TNF- α from N9 cells induced by LPS (10 ng/ml)/IFN- γ (10 unit/ml) with a % inhibition of 15.7 ± 1.5. These results indicate that 1 may attenuate the respiratory burst in neutrophils and suppress the TNF- α formation from macrophages. This work was supported by a grant from the National Science Council of R.O.C. (NSC 88-2314-B-037-037). ## **Experimental Part** *General.* M.p.: uncorrected. UV Spectra: *Jasco-UV-VIS* spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: *Hitachi 260-30* spectrometer; \tilde{v} in cm $^{-1}$. 1 H- and 13 C-NMR Spectra: *Varian-Unity-400* spectrometer; 400 and 100 MHz, resp.; δ in ppm, J in Hz. MS: *JMS-HX-100* mass spectrometer; m/z (rel %). *Plant Material.* Root barks (8.5 kg) of *A. rigida* were collected at Ping-Tung Hsien, Taiwan, in July 1998. A voucher specimen is deposited in the laboratory of medicinal chemistry. Extraction and Isolation. The root barks of *A. rigida* were chipped and extracted with CHCl₃ at r.t. The extract was subjected to column chromatography (silica gel, cyclohexane/CH₂Cl₂/AcOEt 6:3:1): **1** (150 mg). Colorless needles. M.p. $181-182^{\circ}$. [a] $_{25}^{25} = -8$ (c = 0.1, CHCl₃). UV (MeOH): 213 (4.45), 297 (4.15), 403 (2.87). IR (KBr): 3399, 1620, 1593. 1 H- and 13 C-NMR: *Table 1*. EI-MS (70 eV; see *Fig. 2*): 444 (20, M^{+}), 429 (6), 361 (100), 317 (5), 305 (15), 277 (9). *Diacetate of* **1.** Amorphous powder. $[a]_D^{25} = -6$ (c = 0.1, CHCl₃). 1 H-NMR (CDCl₃, 400 MHz; for numbering, see *Fig. 1*): 0.62 (s, Me(24)); 0.88 (s, Me(25)); 1.28 (s, Me(19)); 1.42 (s, Me(14)); 1.57 (s, Me(15)); 1.60 (m, 1 H-C(21)); 1.66 (m, 1 H-C(20)); 1.76 (m, 1 H-C(20)); 2.03 (m, 1 H-C(21)); 2.35 (m, H-C(22)); 2.46 (t, t = 9.2, H-C(17)); 2.26, 2.34 (t s, 2 Ac); 3.01 (t d, t = 9.2, H-C(16)); 3.08 (t d, t = 4.8, 1 H-C(11)); 4.97 (t, J=4.8, H-C(12)); 6.61 (s, H-C(4)); 6.75 (s, H-C(1)); 7.01 (dd, J=8.4, 2.4, H-C(6)); 7.27 (d, J=2.4, H-C(8)); 7.55 (d, J=8.4, H-C(5)). Superoxide-Anion Formation. Superoxide-anion formation was measured in terms of superoxide dismutase inhibitable cytochrome c reduction [14]. Neutrophil suspension was preincubated at 37° with 0.5% DMSO or drugs for 3 min, and then superoxide dismutase of HBSS was added to the blank and test tubes, respectively. The reaction was initiated by challenge with fMLP (0.3 μ M)/CB (5 μ g/ml) of PMA (3 μ M). After 30 min, the reaction was terminated by centrifugation and the absorbance change of supernatants was monitored at 550 nm in a microplate reader. The final concentration of DMSO was fixed at 0.5%. Macrophage Cultures and Drugs Treatment. RAW 264.7 mouse macrophage-like cell line (American Type Culture Collection) was plated in 96-well tissue-culture plates in Dulbecco's modified eagle medium supplemented with 5% fetal calf serum (FCS), 100 unit/ml of penicillin and streptomycin at $2 \cdot 10^5$ cells/ 200 µl per well. Cells were allowed to adhere overnight. Pretreatment of cells with test drugs was done at 37° for 1 h before stimulation with 1 µg/ml of LPS (Escherichia coli, serotype 0111:B4) for 24 h, and then the medium was collected and stored at -70° C until used. The final concentration of DMSO was fixed at 0.5%. Microglial Cell Cultures and Drug Treatment. Murine microglial cell lines N9 [15] (kindly provided by Dr. *P. Ricciardi-Castagnoli*, CNR, Cellular and Molecular Pharmacology Center, Italy) was plated in 96-well tissue-culture plates in *Iscove*'s modified *Dulbecco*'s medium containing 2% heat-inactivated FCS and antibiotics at $8 \cdot 10^4$ cells/200 µl per well. Pretreatment of cells with test drugs was done at 37° for 1 h before stimulation with LPS (10 ng/ml/IFN- γ (10 unit/ml)) for 24 h, and then the medium was collected and stored at -70° until used. The final concentration of DMSO was fixed at 0.5%. $TNF-\alpha$ Determination. TNF- α in medium was measured by an EIA kit according to the procedure described by the manufacturers. Statistical Analysis. Data are presented as the means \pm s.e.m. Statistical analyses were performed with the least-significant-difference test method after analysis of variance. P Values < 0.05 were considered to be significant. Analysis of the regression line was used to calculate IC_{50} values. #### REFERENCES - [1] Y. Hano, R. Inami, T. Nomura, Heterocycles 1990, 31, 2173. - [2] Y. Hano, R. Inami, T. Nomura, Heterocycles 1993, 35, 1341. - [3] T. Nomura, T. Fukai, M. Katayangi, Heterocycles 1978, 9, 745. - [4] W. Steglich, W. Losel, Tetrahedron 1964, 25, 4391. - [5] J. P. Wang, S. L. Raung, C. N. Lin, C. M. Teng, Eur. J. Pharmacol. 1994, 251, 35. - [6] A. Boyum, J. Clin. Invest. 1968, 97 (Suppl.), 77. - [7] R. J. Smith, S. S. Iden, Biochem. Biophys. Res. Commun. 1979, 91, 263. - [8] L. C. Mcphail, R. Snyderman, J. Clin. Invest. 1983, 72, 192. - [9] F. Morel, J. Doussiere, P. V. Vignais, Eur. J. Biochem. 1991, 210, 523. - [10] A. H. Ding, C. F. Nathan, D. J. Stuehr, J. Immunol. 1988, 141, 2407. - [11] L. Meda, M. A. Cassatella, G. I. Szendrei, L. Otvos Jr., P. Baron, M. Villalba, D. Ferrari, F. Ross, Nature (London) 1995, 374, 647. - [12] B. Beuther, A. Cerami, Am. Rev. Biochem. 1988, 57, 505. - [13] L. Minghetti, A. Nicolini, E. Polazzi, C. Creminon, J. Maclouf, G. Levi, Glia. 1997, 19, 152. - [14] M. Market, P. C. Andrews, B. M. Babior, Methods Enzymol. 1984, 105, 358. - [15] S. B. Corradin, J. Mauel, S. D. Donini, E. Quattrocchi, P. Ricciardi-Casragnoli, Glia. 1993, 7, 255. Received November 29, 1999